Ion-implanted polytetrafluoroethylene enhances Saccharomyces cerevisiae biofilm formation for improved immobilization.
نویسندگان
چکیده
The surface of polytetrafluoroethylene (PTFE) was modified using plasma immersion ion implantation (PIII) with the aim of improving its ability to immobilize yeast. The density of immobilized cells on PIII-treated and -untreated PTFE was compared as a function of incubation time over 24 h. Rehydrated yeast cells attached to the PIII-treated PTFE surface more rapidly, with higher density, and greater attachment strength than on the untreated surface. The immobilized yeast cells were removed mechanically or chemically with sodium hydroxide and the residues left on the surfaces were analysed with Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). The results revealed that the mechanism of cell attachment on both surfaces differs and a model is presented for each. Rapid attachment on the PIII-treated surface occurs through covalent bonds of cell wall proteins and the radicals on the treated surface. In contrast, on the untreated surface, only physisorbed molecules were found in the residue and lipids were more highly concentrated than proteins. The presence of lipids in the residue was found to be a consequence of damage to the plasma membrane during the rehydration process and the increased cell stress was also apparent by the amount of Hsp12 in the protein residue. The immobilized yeast cells on PIII-treated PTFE were found to be as active as yeast cells in suspension.
منابع مشابه
The Effect of Biosurfactant of Saccharomyces Cerevisiae on Biofilms Produced by Staphylococcus Aureus, Epidermidis and Saprophyticus: A Laboratory Study
Background and Objectives: Biosurfactants are amphiphilic molecules produced by microorganisms that due to surfactant activity, have several applications in different industries such as cleaning, emulsification, foaming and dispersion. The aim of this study was to investigate the effect of biosurfactant extracted from saccharomycess cerevisiae on biofilm formation of staphylococcus aureus (PTC...
متن کاملاثر مخمر پروبیوتیکی ساکارومایسس سرویزیه بر تشکیل بیوفیلم استافیلوکوکوس اورئوس
Background and Objective: Biofilm formation is an important virulence factor in Staphylococcus aureus. Most infections associated with biofilm of this bacterium are difficult to treat with antibiotics. As yet, a lot of mechanisms have been explained for probiotic yeast functions against bacterial infections, but few studies have been done on their effects on biofilm formation. The aim of this s...
متن کاملImmobilization of bacteria and Saccharomyces cerevisiae in poly(tetrafluoroethylene) membranes.
A novel method for immobilization of bacteria and Saccharomyces cerevisiae cells is described. Microorganisms may be entrapped in a matrix of poly(tetrafluoroethylene) (PTFE) fibrils. Cells are blended with an aqueous emulsion of PTFE stabilized with Triton X-100 surfactant to form a thick paste. The paste is calendered biaxially in a standard rubber mill. This process causes fibrillation of th...
متن کاملP-18: Protective Effect of Selenium- Enriched Saccharomyces Cerevisiae Cytoplasm and Cell Wall on Chronic Immobilization Stress-Induced Damages in Testis; Evidence for Apoptosis
Background Previous reports showed that immobilization stress (IMS) results in severe damages at spermatogenesis level. Present study was performed in order to evaluate the protective effect of selenium-enriched yeast fragments on IMS-induced derangements. MaterialsAndMethods For this purpose, 42 mature male Wister rats were assigned into 6 groups (7 rats in each group) including; control, stre...
متن کاملManganese Ion Increases LAB-yeast Mixed-species Biofilm Formation
Remarkable LAB-yeast mixed-species biofilm was formed by lactic acid bacteria (LAB) Lactobacillus plantarum ML11-11 isolated from Fukuyama pot vinegar and Saccharomyces cerevisiae. This mixed-species biofilm formation increased in proportion to the YPD medium concentration but decreased in proportion to the MRS medium concentration. The effect of MRS components on mixed-species biofilm formatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 9 76 شماره
صفحات -
تاریخ انتشار 2012